FMClassificationModel

pyspark.ml.classification。 FMClassificationModel ( java_model:可選(JavaObject]=沒有一個 )

模型擬合的FMClassifier

方法

清晰的(參數)

清除參數映射的參數是否被顯式地設置。

複製((額外的))

創建這個實例的副本具有相同uid和一些額外的參數。

評估(數據集)

評估模型的測試數據集。

explainParam(參數)

解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。

explainParams()

返回文檔的所有參數選擇默認值和用戶提供的值。

extractParamMap((額外的))

提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。

getFactorSize()

得到的價值factorSize或其默認值。

getFeaturesCol()

得到的價值featuresCol或其默認值。

getFitIntercept()

得到的價值fitIntercept或其默認值。

getFitLinear()

得到的價值fitLinear或其默認值。

getInitStd()

得到的價值initStd或其默認值。

getLabelCol()

得到的價值labelCol或其默認值。

getMaxIter()

麥克斯特的價值或其默認值。

getMiniBatchFraction()

得到的價值miniBatchFraction或其默認值。

getOrDefault(參數)

得到參數的值在用戶提供的參數映射或其默認值。

getParam(paramName)

通過它的名稱參數。

getPredictionCol()

得到的價值predictionCol或其默認值。

getProbabilityCol()

得到的價值probabilityCol或其默認值。

getRawPredictionCol()

得到的價值rawPredictionCol或其默認值。

getRegParam()

得到的價值regParam或其默認值。

getSeed()

種子的價值或其默認值。

getSolver()

得到解決的價值或其默認值。

getStepSize()

得到的價值stepSize或其默認值。

getThresholds()

得到的值閾值或其默認值。

getTol()

被托爾的價值或其默認值。

getWeightCol()

得到的價值weightCol或其默認值。

hasDefault(參數)

檢查是否一個參數有默認值。

hasParam(paramName)

測試這個實例包含一個參數是否與給定名稱(字符串)。

isDefined(參數)

檢查參數是否由用戶或顯式地設置一個默認值。

收取(參數)

檢查參數是否由用戶顯式地設置。

負載(路徑)

從輸入路徑,讀取一個毫升實例的快捷方式read () .load(路徑)

預測(值)

預測給定特性的標簽。

predictProbability(值)

每個類的概率預測的功能。

predictRaw(值)

原始預測為每個可能的標簽。

()

返回一個MLReader這個類的實例。

保存(路徑)

這個毫升實例保存到給定的路徑,一個快捷方式的“寫().save(路徑)。

(參數值)

設置一個參數嵌入參數映射。

setFeaturesCol(值)

設置的值featuresCol

setPredictionCol(值)

設置的值predictionCol

setProbabilityCol(值)

設置的值probabilityCol

setRawPredictionCol(值)

設置的值rawPredictionCol

setThresholds(值)

設置的值閾值

總結()

總結(精度/精密/召回,客觀曆史,總迭代)模型在訓練集上訓練。

變換(數據集[params))

與可選參數轉換的輸入數據集。

()

返回一個MLWriter實例毫升實例。

屬性

factorSize

因素

模型的因素。

featuresCol

fitIntercept

fitLinear

hasSummary

表明這個模型實例是否存在一個培訓總結。

initStd

攔截

截距的模型。

labelCol

線性

模型線性項。

麥克斯特

miniBatchFraction

numClasses

數量的類標簽可以(值)。

numFeatures

返回的數量特征模型訓練。

參數個數

返回所有參數命令的名字。

predictionCol

probabilityCol

rawPredictionCol

regParam

種子

解算器

stepSize

閾值

托爾

weightCol

方法的文檔

清晰的 ( 參數:pyspark.ml.param.Param )→沒有

清除參數映射的參數是否被顯式地設置。

複製 ( 額外的:可選(ParamMap]=沒有一個 )→摩根大通

創建這個實例的副本具有相同uid和一些額外的參數。這個實現第一次調用參數。複製and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

參數
額外的 東西,可選

額外參數複製到新實例

返回
JavaParams

這個實例的副本

評估 ( 數據集:pyspark.sql.dataframe.DataFrame )pyspark.ml.classification.FMClassificationSummary

評估模型的測試數據集。

參數
數據集 pyspark.sql.DataFrame

測試數據集對模型進行評估。

explainParam ( 參數:聯盟(str,pyspark.ml.param.Param] )→str

解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。

explainParams ( )→str

返回文檔的所有參數選擇默認值和用戶提供的值。

extractParamMap ( 額外的:可選(ParamMap]=沒有一個 )→ParamMap

提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。

參數
額外的 東西,可選

額外的參數值

返回
dict

合並後的參數映射

getFactorSize ( )→int

得到的價值factorSize或其默認值。

getFeaturesCol ( )→str

得到的價值featuresCol或其默認值。

getFitIntercept ( )→bool

得到的價值fitIntercept或其默認值。

getFitLinear ( )→bool

得到的價值fitLinear或其默認值。

getInitStd ( )→浮動

得到的價值initStd或其默認值。

getLabelCol ( )→str

得到的價值labelCol或其默認值。

getMaxIter ( )→int

麥克斯特的價值或其默認值。

getMiniBatchFraction ( )→浮動

得到的價值miniBatchFraction或其默認值。

getOrDefault ( 參數:聯盟(str,pyspark.ml.param.Param(T]] )→聯盟(任何,T]

得到參數的值在用戶提供的參數映射或其默認值。如果沒有設置提出了一個錯誤。

getParam ( paramName:str )pyspark.ml.param.Param

通過它的名稱參數。

getPredictionCol ( )→str

得到的價值predictionCol或其默認值。

getProbabilityCol ( )→str

得到的價值probabilityCol或其默認值。

getRawPredictionCol ( )→str

得到的價值rawPredictionCol或其默認值。

getRegParam ( )→浮動

得到的價值regParam或其默認值。

getSeed ( )→int

種子的價值或其默認值。

getSolver ( )→str

得到解決的價值或其默認值。

getStepSize ( )→浮動

得到的價值stepSize或其默認值。

getThresholds ( )→列表(浮動]

得到的值閾值或其默認值。

getTol ( )→浮動

被托爾的價值或其默認值。

getWeightCol ( )→str

得到的價值weightCol或其默認值。

hasDefault ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查是否一個參數有默認值。

hasParam ( paramName:str )→bool

測試這個實例包含一個參數是否與給定名稱(字符串)。

isDefined ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查參數是否由用戶或顯式地設置一個默認值。

收取 ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查參數是否由用戶顯式地設置。

classmethod 負載 ( 路徑:str )→RL

從輸入路徑,讀取一個毫升實例的快捷方式read () .load(路徑)

預測 ( 價值:T )→浮動

預測給定特性的標簽。

predictProbability ( 價值:pyspark.ml.linalg.Vector )pyspark.ml.linalg.Vector

每個類的概率預測的功能。

predictRaw ( 價值:pyspark.ml.linalg.Vector )pyspark.ml.linalg.Vector

原始預測為每個可能的標簽。

classmethod ( )→pyspark.ml.util.JavaMLReader(RL]

返回一個MLReader這個類的實例。

保存 ( 路徑:str )→沒有

這個毫升實例保存到給定的路徑,一個快捷方式的“寫().save(路徑)。

( 參數:pyspark.ml.param.Param,價值:任何 )→沒有

設置一個參數嵌入參數映射。

setFeaturesCol ( 價值:str )→P

設置的值featuresCol

setPredictionCol ( 價值:str )→P

設置的值predictionCol

setProbabilityCol ( 價值:str )→厘米

設置的值probabilityCol

setRawPredictionCol ( 價值:str )→P

設置的值rawPredictionCol

setThresholds ( 價值:列表(浮動] )→厘米

設置的值閾值

總結 ( )pyspark.ml.classification.FMClassificationTrainingSummary

總結(精度/精密/召回,客觀曆史,總迭代)模型對訓練集訓練。如果是一個例外trainingSummary沒有

變換 ( 數據集:pyspark.sql.dataframe.DataFrame,參數個數:可選(ParamMap]=沒有一個 )→pyspark.sql.dataframe.DataFrame

與可選參數轉換的輸入數據集。

參數
數據集 pyspark.sql.DataFrame

輸入數據集

參數個數 東西,可選

一個可選的參數覆蓋嵌入參數的地圖。

返回
pyspark.sql.DataFrame

改變了數據集

( )→pyspark.ml.util.JavaMLWriter

返回一個MLWriter實例毫升實例。

屬性的文檔

factorSize =參數(父母=‘定義’,name = ' factorSize ', doc =的係數向量的維數,用於得到兩兩變量之間的相互作用的)
因素

模型的因素。

featuresCol =參數(父母=‘定義’,name = ' featuresCol ', doc =功能列名稱。)
fitIntercept =參數(父母=‘定義’,name = ' fitIntercept ', doc =是否適合一個截距項。)
fitLinear =參數(父母=‘定義’,name = ' fitLinear ', doc =是否適合線性項)”(即1路的詞)
hasSummary

表明這個模型實例是否存在一個培訓總結。

initStd =參數(父母=‘定義’,name = ' initStd ', doc =初始係數的標準差)
攔截

截距的模型。

labelCol =參數(父母=‘定義’,name = ' labelCol ', doc =“標簽列名。”)
線性

模型線性項。

麥克斯特 =參數(父母=‘定義’,name =“麥克斯特”,醫生=“馬克斯(> = 0)的迭代次數。)
miniBatchFraction =參數(父母=‘定義’,name = ' miniBatchFraction ', doc =分數的輸入數據集應該用於一個迭代的梯度下降法)
numClasses

數量的類標簽可以(值)。

numFeatures

返回的數量特征模型訓練。如果未知,返回1

參數個數

返回所有參數命令的名字。默認實現使用dir ()所有的屬性類型參數

predictionCol =參數(父母=‘定義’,name = ' predictionCol ', doc =預測列名稱。)
probabilityCol :Param (str) =參數(父母=‘定義’,name = ' probabilityCol ', doc = '列名為預測類條件概率。注意:並不是所有的模型輸出精確校準的概率估計!這些概率應該被視為機密,而不是精確的概率。”)
rawPredictionCol =參數(父母=‘定義’,name = ' rawPredictionCol ', doc =“原始預測(又名信心)列名”。)
regParam =參數(父母=‘定義’,name = ' regParam ', doc =“正則化參數(> = 0)”。)
種子 =參數(父母=‘定義’,name =“種子”,醫生=“隨機種子。”)
解算器 =參數(父母=‘定義’,name =“規劃求解”,醫生= '優化的求解算法。支持選擇:adamW gd。(默認adamW)”)
stepSize =參數(父母=‘定義’,name = ' stepSize ', doc =的每個迭代步長用於優化(> = 0)”。)
閾值 =參數(父母=‘定義’,name =“閾值”,醫生=“多層次分類閾值調整的概率預測每個類。數組長度必須等於類的數量,最多值> 0,除了一個值可能是0。類最大的值p / t是預測,p是原始類和t的概率是類的門檻。”)
托爾 =參數(父母=‘定義’,name =“托爾”,醫生=迭代算法的收斂公差(> = 0)”。)
weightCol =參數(父母=‘定義’,name = ' weightCol ', doc = '體重列名。如果這不是設置或空,我們對所有實例權重為1.0。”)