LinearSVCModel¶
-
類
pyspark.ml.classification。
LinearSVCModel
( java_model:可選(JavaObject]=沒有一個 ) ¶ -
由LinearSVC模型擬合。
方法
清晰的
(參數)清除參數映射的參數是否被顯式地設置。
複製
((額外的))創建這個實例的副本具有相同uid和一些額外的參數。
評估
(數據集)評估模型的測試數據集。
explainParam
(參數)解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。
返回文檔的所有參數選擇默認值和用戶提供的值。
extractParamMap
((額外的))提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。
得到的價值aggregationDepth或其默認值。
得到的價值featuresCol或其默認值。
得到的價值fitIntercept或其默認值。
得到的價值labelCol或其默認值。
得到的價值maxBlockSizeInMB或其默認值。
麥克斯特的價值或其默認值。
getOrDefault
(參數)得到參數的值在用戶提供的參數映射或其默認值。
getParam
(paramName)通過它的名稱參數。
得到的價值predictionCol或其默認值。
得到的價值rawPredictionCol或其默認值。
得到的價值regParam或其默認值。
被標準化的價值或其默認值。
得到的值閾值或其默認值。
getTol
()被托爾的價值或其默認值。
得到的價值weightCol或其默認值。
hasDefault
(參數)檢查是否一個參數有默認值。
hasParam
(paramName)測試這個實例包含一個參數是否與給定名稱(字符串)。
isDefined
(參數)檢查參數是否由用戶或顯式地設置一個默認值。
收取
(參數)檢查參數是否由用戶顯式地設置。
負載
(路徑)從輸入路徑,讀取一個毫升實例的快捷方式read () .load(路徑)。
預測
(值)預測給定特性的標簽。
predictRaw
(值)原始預測為每個可能的標簽。
讀
()返回一個MLReader這個類的實例。
保存
(路徑)這個毫升實例保存到給定的路徑,一個快捷方式的“寫().save(路徑)。
集
(參數值)設置一個參數嵌入參數映射。
設置的值
featuresCol
。設置的值
predictionCol
。設置的值
rawPredictionCol
。setThreshold
(值)設置的值
閾值
。總結
()總結(精度/精密/召回,客觀曆史,總迭代)模型在訓練集上訓練。
變換
(數據集[params))與可選參數轉換的輸入數據集。
寫
()返回一個MLWriter實例毫升實例。
屬性
模型係數的線性支持向量機分類器。
表明這個模型實例是否存在一個培訓總結。
模型線性SVM分類器的攔截。
數量的類標簽可以(值)。
返回的數量特征模型訓練。
返回所有參數命令的名字。
方法的文檔
-
清晰的
( 參數:pyspark.ml.param.Param )→沒有¶ -
清除參數映射的參數是否被顯式地設置。
-
複製
( 額外的:可選(ParamMap]=沒有一個 )→摩根大通¶ -
創建這個實例的副本具有相同uid和一些額外的參數。這個實現第一次調用參數。複製and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- 參數
-
- 額外的 東西,可選
-
額外參數複製到新實例
- 返回
-
-
JavaParams
-
這個實例的副本
-
-
評估
( 數據集:pyspark.sql.dataframe.DataFrame )→pyspark.ml.classification.LinearSVCSummary ¶ -
評估模型的測試數據集。
- 參數
-
-
數據集
pyspark.sql.DataFrame
-
測試數據集對模型進行評估。
-
數據集
-
explainParam
( 參數:聯盟(str,pyspark.ml.param.Param] )→str¶ -
解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。
-
explainParams
( )→str¶ -
返回文檔的所有參數選擇默認值和用戶提供的值。
-
extractParamMap
( 額外的:可選(ParamMap]=沒有一個 )→ParamMap¶ -
提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。
- 參數
-
- 額外的 東西,可選
-
額外的參數值
- 返回
-
- dict
-
合並後的參數映射
-
getAggregationDepth
( )→int¶ -
得到的價值aggregationDepth或其默認值。
-
getFeaturesCol
( )→str¶ -
得到的價值featuresCol或其默認值。
-
getFitIntercept
( )→bool¶ -
得到的價值fitIntercept或其默認值。
-
getLabelCol
( )→str¶ -
得到的價值labelCol或其默認值。
-
getMaxBlockSizeInMB
( )→浮動¶ -
得到的價值maxBlockSizeInMB或其默認值。
-
getMaxIter
( )→int¶ -
麥克斯特的價值或其默認值。
-
getOrDefault
( 參數:聯盟(str,pyspark.ml.param.Param(T]] )→聯盟(任何,T] ¶ -
得到參數的值在用戶提供的參數映射或其默認值。如果沒有設置提出了一個錯誤。
-
getParam
( paramName:str )→pyspark.ml.param.Param ¶ -
通過它的名稱參數。
-
getPredictionCol
( )→str¶ -
得到的價值predictionCol或其默認值。
-
getRawPredictionCol
( )→str¶ -
得到的價值rawPredictionCol或其默認值。
-
getRegParam
( )→浮動¶ -
得到的價值regParam或其默認值。
-
getStandardization
( )→bool¶ -
被標準化的價值或其默認值。
-
getThreshold
( )→浮動¶ -
得到的值閾值或其默認值。
-
getTol
( )→浮動¶ -
被托爾的價值或其默認值。
-
getWeightCol
( )→str¶ -
得到的價值weightCol或其默認值。
-
hasDefault
( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool¶ -
檢查是否一個參數有默認值。
-
hasParam
( paramName:str )→bool¶ -
測試這個實例包含一個參數是否與給定名稱(字符串)。
-
isDefined
( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool¶ -
檢查參數是否由用戶或顯式地設置一個默認值。
-
收取
( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool¶ -
檢查參數是否由用戶顯式地設置。
-
classmethod
負載
( 路徑:str )→RL¶ -
從輸入路徑,讀取一個毫升實例的快捷方式read () .load(路徑)。
-
預測
( 價值:T )→浮動¶ -
預測給定特性的標簽。
-
predictRaw
( 價值:pyspark.ml.linalg.Vector )→pyspark.ml.linalg.Vector ¶ -
原始預測為每個可能的標簽。
-
classmethod
讀
( )→pyspark.ml.util.JavaMLReader(RL] ¶ -
返回一個MLReader這個類的實例。
-
保存
( 路徑:str )→沒有¶ -
這個毫升實例保存到給定的路徑,一個快捷方式的“寫().save(路徑)。
-
集
( 參數:pyspark.ml.param.Param,價值:任何 )→沒有¶ -
設置一個參數嵌入參數映射。
-
setFeaturesCol
( 價值:str )→P¶ -
設置的值
featuresCol
。
-
setPredictionCol
( 價值:str )→P¶ -
設置的值
predictionCol
。
-
setRawPredictionCol
( 價值:str )→P¶ -
設置的值
rawPredictionCol
。
-
setThreshold
( 價值:浮動 )→pyspark.ml.classification.LinearSVCModel ¶ -
設置的值
閾值
。
-
總結
( )→pyspark.ml.classification.LinearSVCTrainingSummary ¶ -
總結(精度/精密/召回,客觀曆史,總迭代)模型對訓練集訓練。如果是一個例外trainingSummary沒有。
-
變換
( 數據集:pyspark.sql.dataframe.DataFrame,參數個數:可選(ParamMap]=沒有一個 )→pyspark.sql.dataframe.DataFrame¶ -
與可選參數轉換的輸入數據集。
- 參數
-
-
數據集
pyspark.sql.DataFrame
-
輸入數據集
- 參數個數 東西,可選
-
一個可選的參數覆蓋嵌入參數的地圖。
-
數據集
- 返回
-
-
pyspark.sql.DataFrame
-
改變了數據集
-
-
寫
( )→pyspark.ml.util.JavaMLWriter¶ -
返回一個MLWriter實例毫升實例。
屬性的文檔
-
aggregationDepth
=參數(父母=‘定義’,name = ' aggregationDepth ', doc =的建議深度treeAggregate (> = 2)。) ¶
-
係數
¶ -
模型係數的線性支持向量機分類器。
-
featuresCol
=參數(父母=‘定義’,name = ' featuresCol ', doc =功能列名稱。) ¶
-
fitIntercept
=參數(父母=‘定義’,name = ' fitIntercept ', doc =是否適合一個截距項。) ¶
-
hasSummary
¶ -
表明這個模型實例是否存在一個培訓總結。
-
攔截
¶ -
模型線性SVM分類器的攔截。
-
labelCol
=參數(父母=‘定義’,name = ' labelCol ', doc =“標簽列名。”) ¶
-
maxBlockSizeInMB
=參數(父母=‘定義’,name = ' maxBlockSizeInMB ',醫生在MB = '最大內存疊加輸入數據塊。數據分區內堆放。如果超過剩餘的數據大小的分區是調整大小的數據。默認0.0代表了選擇最優值,取決於特定的算法。必須> = 0”。) ¶
-
麥克斯特
=參數(父母=‘定義’,name =“麥克斯特”,醫生=“馬克斯(> = 0)的迭代次數。) ¶
-
numClasses
¶ -
數量的類標簽可以(值)。
-
numFeatures
¶ -
返回的數量特征模型訓練。如果未知,返回1
-
參數個數
¶ -
返回所有參數命令的名字。默認實現使用
dir ()
所有的屬性類型參數
。
-
predictionCol
=參數(父母=‘定義’,name = ' predictionCol ', doc =預測列名稱。) ¶
-
rawPredictionCol
=參數(父母=‘定義’,name = ' rawPredictionCol ', doc =“原始預測(又名信心)列名”。) ¶
-
regParam
=參數(父母=‘定義’,name = ' regParam ', doc =“正則化參數(> = 0)”。) ¶
-
標準化
=參數(父母=‘定義’,name =“標準化”,醫生=是否規範培訓特性擬合模型之前。) ¶
-
閾值
:pyspark.ml.param.Param(浮動) =參數(父母=‘定義’,name =“閾值”,醫生= '以二進製分類閾值應用到線性模型預測。這個閾值可以是任何實數,正將所有預測0.0和1.0負無窮將使所有的預測。”) ¶
-
托爾
=參數(父母=‘定義’,name =“托爾”,醫生=迭代算法的收斂公差(> = 0)”。) ¶
-
weightCol
=參數(父母=‘定義’,name = ' weightCol ', doc = '體重列名。如果這不是設置或空,我們對所有實例權重為1.0。”) ¶
-