評估者

pyspark.ml.evaluation。 評估者

基類評估計算指標的預測。

方法

清晰的(參數)

清除參數映射的參數是否被顯式地設置。

複製((額外的))

創建這個實例的副本具有相同uid和一些額外的參數。

評估(數據集[params))

評估可選參數的輸出。

explainParam(參數)

解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。

explainParams()

返回文檔的所有參數選擇默認值和用戶提供的值。

extractParamMap((額外的))

提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。

getOrDefault(參數)

得到參數的值在用戶提供的參數映射或其默認值。

getParam(paramName)

通過它的名稱參數。

hasDefault(參數)

檢查是否一個參數有默認值。

hasParam(paramName)

測試這個實例包含一個參數是否與給定名稱(字符串)。

isDefined(參數)

檢查參數是否由用戶或顯式地設置一個默認值。

isLargerBetter()

指示是否返回的度量evaluate ()應該最大化(真的,默認情況下)或最小化(假)。

收取(參數)

檢查參數是否由用戶顯式地設置。

(參數值)

設置一個參數嵌入參數映射。

屬性

參數個數

返回所有參數命令的名字。

方法的文檔

清晰的 ( 參數:pyspark.ml.param.Param )→沒有

清除參數映射的參數是否被顯式地設置。

複製 ( 額外的:可選(ParamMap]=沒有一個 )→P

創建這個實例的副本具有相同uid和一些額外的參數。默認實現創建一個淺拷貝使用copy.copy (),然後複製嵌入和額外參數並返回副本。子類應該覆蓋這個方法如果默認的方法是不夠的。

參數
額外的 東西,可選

額外參數複製到新實例

返回
參數個數

這個實例的副本

評估 ( 數據集:pyspark.sql.dataframe.DataFrame,參數個數:可選(ParamMap]=沒有一個 )→浮動

評估可選參數的輸出。

參數
數據集 pyspark.sql.DataFrame

一個數據集,其中包含標簽/觀察和預測

參數個數 東西,可選

一個可選的參數覆蓋嵌入參數的地圖

返回
浮動

度規

explainParam ( 參數:聯盟(str,pyspark.ml.param.Param] )→str

解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。

explainParams ( )→str

返回文檔的所有參數選擇默認值和用戶提供的值。

extractParamMap ( 額外的:可選(ParamMap]=沒有一個 )→ParamMap

提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。

參數
額外的 東西,可選

額外的參數值

返回
dict

合並後的參數映射

getOrDefault ( 參數:聯盟(str,pyspark.ml.param.Param(T]] )→聯盟(任何,T]

得到參數的值在用戶提供的參數映射或其默認值。如果沒有設置提出了一個錯誤。

getParam ( paramName:str )pyspark.ml.param.Param

通過它的名稱參數。

hasDefault ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查是否一個參數有默認值。

hasParam ( paramName:str )→bool

測試這個實例包含一個參數是否與給定名稱(字符串)。

isDefined ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查參數是否由用戶或顯式地設置一個默認值。

isLargerBetter ( )→bool

指示是否返回的度量evaluate ()應該最大化(真的,默認情況下)或最小化(假)。給定的評估者可以支持多個指標可能最大化或最小化。

收取 ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查參數是否由用戶顯式地設置。

( 參數:pyspark.ml.param.Param,價值:任何 )→沒有

設置一個參數嵌入參數映射。

屬性的文檔

參數個數

返回所有參數命令的名字。默認實現使用dir ()所有的屬性類型參數