標準化者

pyspark.ml.feature。 標準化者 ( *,p:浮動=2.0,inputCol:可選(str]=沒有一個,outputCol:可選(str]=沒有一個 )

標準化一個向量單位使用給定p-norm規範。

例子

> > >pyspark.ml.linalg進口向量> > >svec=向量稀疏的(4,{1:4.0,3:3.0})> > >df=火花createDataFrame(((向量密集的([3.0,- - - - - -4.0]),svec)),(“密集”,“稀疏”])> > >標準化者=標準化者(p=2.0)> > >標準化者setInputCol(“密集”)標準化者……> > >標準化者setOutputCol(“特征”)標準化者……> > >標準化者變換(df)()特性DenseVector ([0.6, -0.8])> > >標準化者setparam(inputCol=“稀疏”,outputCol=“頻率”)變換(df)()頻率SparseVector (4, {1: 0.8, 3: 0.6})> > >參數個數={標準化者p:1.0,標準化者inputCol:“密集”,標準化者outputCol:“向量”}> > >標準化者變換(df,參數個數)()向量DenseVector ([0.4286, -0.5714])> > >normalizerPath=temp_path+“/標準化者”> > >標準化者保存(normalizerPath)> > >loadedNormalizer=標準化者負載(normalizerPath)> > >loadedNormalizergetP()= =標準化者getP()真正的> > >loadedNormalizer變換(df)(1)= =標準化者變換(df)(1)真正的

方法

清晰的(參數)

清除參數映射的參數是否被顯式地設置。

複製((額外的))

創建這個實例的副本具有相同uid和一些額外的參數。

explainParam(參數)

解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。

explainParams()

返回文檔的所有參數選擇默認值和用戶提供的值。

extractParamMap((額外的))

提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。

getInputCol()

得到的價值inputCol或其默認值。

getOrDefault(參數)

得到參數的值在用戶提供的參數映射或其默認值。

getOutputCol()

得到的價值outputCol或其默認值。

getP()

得到p的值或其默認值。

getParam(paramName)

通過它的名稱參數。

hasDefault(參數)

檢查是否一個參數有默認值。

hasParam(paramName)

測試這個實例包含一個參數是否與給定名稱(字符串)。

isDefined(參數)

檢查參數是否由用戶或顯式地設置一個默認值。

收取(參數)

檢查參數是否由用戶顯式地設置。

負載(路徑)

從輸入路徑,讀取一個毫升實例的快捷方式read () .load(路徑)

()

返回一個MLReader這個類的實例。

保存(路徑)

這個毫升實例保存到給定的路徑,一個快捷方式的“寫().save(路徑)。

(參數值)

設置一個參數嵌入參數映射。

setInputCol(值)

設置的值inputCol

setOutputCol(值)

設置的值outputCol

(值)

設置的值p

setparam(自我\ * [p inputCol outputCol])

設置參數標準化者。

變換(數據集[params))

與可選參數轉換的輸入數據集。

()

返回一個MLWriter實例毫升實例。

屬性

inputCol

outputCol

p

參數個數

返回所有參數命令的名字。

方法的文檔

清晰的 ( 參數:pyspark.ml.param.Param )→沒有

清除參數映射的參數是否被顯式地設置。

複製 ( 額外的:可選(ParamMap]=沒有一個 )→摩根大通

創建這個實例的副本具有相同uid和一些額外的參數。這個實現第一次調用參數。複製and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

參數
額外的 東西,可選

額外參數複製到新實例

返回
JavaParams

這個實例的副本

explainParam ( 參數:聯盟(str,pyspark.ml.param.Param] )→str

解釋一個參數並返回它的名字,醫生,和可選的默認值,用戶提供的字符串值。

explainParams ( )→str

返回文檔的所有參數選擇默認值和用戶提供的值。

extractParamMap ( 額外的:可選(ParamMap]=沒有一個 )→ParamMap

提取嵌入默認參數值和用戶提供的值,然後合並他們額外的值從輸入平麵參數映射,後者使用價值如果存在衝突,即。排序:默認參數值< <額外的用戶提供的值。

參數
額外的 東西,可選

額外的參數值

返回
dict

合並後的參數映射

getInputCol ( )→str

得到的價值inputCol或其默認值。

getOrDefault ( 參數:聯盟(str,pyspark.ml.param.Param(T]] )→聯盟(任何,T]

得到參數的值在用戶提供的參數映射或其默認值。如果沒有設置提出了一個錯誤。

getOutputCol ( )→str

得到的價值outputCol或其默認值。

getP ( )→浮動

得到p的值或其默認值。

getParam ( paramName:str )pyspark.ml.param.Param

通過它的名稱參數。

hasDefault ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查是否一個參數有默認值。

hasParam ( paramName:str )→bool

測試這個實例包含一個參數是否與給定名稱(字符串)。

isDefined ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查參數是否由用戶或顯式地設置一個默認值。

收取 ( 參數:聯盟(str,pyspark.ml.param.Param(任何]] )→bool

檢查參數是否由用戶顯式地設置。

classmethod 負載 ( 路徑:str )→RL

從輸入路徑,讀取一個毫升實例的快捷方式read () .load(路徑)

classmethod ( )→pyspark.ml.util.JavaMLReader(RL]

返回一個MLReader這個類的實例。

保存 ( 路徑:str )→沒有

這個毫升實例保存到給定的路徑,一個快捷方式的“寫().save(路徑)。

( 參數:pyspark.ml.param.Param,價值:任何 )→沒有

設置一個參數嵌入參數映射。

setInputCol ( 價值:str )pyspark.ml.feature.Normalizer

設置的值inputCol

setOutputCol ( 價值:str )pyspark.ml.feature.Normalizer

設置的值outputCol

( 價值:浮動 )pyspark.ml.feature.Normalizer

設置的值p

setparam ( 自我,\ *,p = 2.0,inputCol =沒有,outputCol =沒有 )

設置參數標準化者。

變換 ( 數據集:pyspark.sql.dataframe.DataFrame,參數個數:可選(ParamMap]=沒有一個 )→pyspark.sql.dataframe.DataFrame

與可選參數轉換的輸入數據集。

參數
數據集 pyspark.sql.DataFrame

輸入數據集

參數個數 東西,可選

一個可選的參數覆蓋嵌入參數的地圖。

返回
pyspark.sql.DataFrame

改變了數據集

( )→pyspark.ml.util.JavaMLWriter

返回一個MLWriter實例毫升實例。

屬性的文檔

inputCol =參數(父母=‘定義’,name = ' inputCol ', doc =輸入列名稱。)
outputCol =參數(父母=‘定義’,name = ' outputCol ', doc =輸出列名稱。)
p =參數(父母=‘定義’,名字=“p”,醫生= p規範值。)
參數個數

返回所有參數命令的名字。默認實現使用dir ()所有的屬性類型參數