ニューラルネットワークとは,層狀構造が人間の脳內にあるニューロンのネットワーク構造に類似した數理モデルです。ニュ,ロンと呼ばれる相互に結合する処理要素を特徴としており,出力機能を生成します。ニュ,ラルネットワ,クは、入力層と出力層で構成されており、その多くには隠れ層があります。この隠れ層は、入力を出力層で使用できるものに変換するユニットで構成されています。
人工ニューラルネットワークとしても知られるニューラルネットワークは,さまざまな深層學習アルゴリズムを使用します。ニュラルネットワクの最も一般的なタプは次のとおりです。
最も基本的で一般的なアキテクチャタプで,情報は入力から出力までの一方向にのみ移動します。入力層と出力層からなり,その間に隠れ層があります。隠れ層が1つ以上ある場合,そのネットワークは”ディープニューラルネットワーク”と呼ばれます。
より複雑なタ▪▪プのネットワ▪▪クです。この人工ニュ,ラルネットワ,クは,音聲認識や自然言語処理(nlp)で一般的に使用されています。rnnは,シ,ケンスの各要素に対して同一のタスクを実行し,出力は前の計算に依存します。
畳み込みニューラルネットワークは,データをカテゴリにフィルタリングする複數の層で構成されており,畫像認識,テキスト言語処理,分類などにおいて非常に効果的であることが証明されています。畳み込みニューラルネットワークは,入力層,隠れ層,出力層で構成されており,隠れ層には複數の畳み込み層,プーリング層,全結合層,正規化層などがあります。ニュ、ラルネットワ、クには、他にも少なくとも十數以上のタ、プがあります。ボルツマンマシンネットワーク,ポップフィールドネットワーク等の対稱結合型ネットワークなどが挙げられます。適切なネットワークの選択は,トレーニングに必要なデータと使用予定のアプリケーションによって異なります。